3.345 \(\int \frac{x (c+d x+e x^2)}{(a+b x^3)^2} \, dx\)

Optimal. Leaf size=200 \[ \frac{\left (b^{2/3} c-a^{2/3} e\right ) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{18 a^{4/3} b^{4/3}}-\frac{\left (b^{2/3} c-a^{2/3} e\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{4/3} b^{4/3}}-\frac{\left (a^{2/3} e+b^{2/3} c\right ) \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} a^{4/3} b^{4/3}}-\frac{x \left (a e-b c x-b d x^2\right )}{3 a b \left (a+b x^3\right )} \]

[Out]

-(x*(a*e - b*c*x - b*d*x^2))/(3*a*b*(a + b*x^3)) - ((b^(2/3)*c + a^(2/3)*e)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sq
rt[3]*a^(1/3))])/(3*Sqrt[3]*a^(4/3)*b^(4/3)) - ((b^(2/3)*c - a^(2/3)*e)*Log[a^(1/3) + b^(1/3)*x])/(9*a^(4/3)*b
^(4/3)) + ((b^(2/3)*c - a^(2/3)*e)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(18*a^(4/3)*b^(4/3))

________________________________________________________________________________________

Rubi [A]  time = 0.15269, antiderivative size = 200, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {1828, 1860, 31, 634, 617, 204, 628} \[ \frac{\left (b^{2/3} c-a^{2/3} e\right ) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{18 a^{4/3} b^{4/3}}-\frac{\left (b^{2/3} c-a^{2/3} e\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{4/3} b^{4/3}}-\frac{\left (a^{2/3} e+b^{2/3} c\right ) \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} a^{4/3} b^{4/3}}-\frac{x \left (a e-b c x-b d x^2\right )}{3 a b \left (a+b x^3\right )} \]

Antiderivative was successfully verified.

[In]

Int[(x*(c + d*x + e*x^2))/(a + b*x^3)^2,x]

[Out]

-(x*(a*e - b*c*x - b*d*x^2))/(3*a*b*(a + b*x^3)) - ((b^(2/3)*c + a^(2/3)*e)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sq
rt[3]*a^(1/3))])/(3*Sqrt[3]*a^(4/3)*b^(4/3)) - ((b^(2/3)*c - a^(2/3)*e)*Log[a^(1/3) + b^(1/3)*x])/(9*a^(4/3)*b
^(4/3)) + ((b^(2/3)*c - a^(2/3)*e)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(18*a^(4/3)*b^(4/3))

Rule 1828

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> With[{q = m + Expon[Pq, x]}, Module[{Q = Pol
ynomialQuotient[b^(Floor[(q - 1)/n] + 1)*x^m*Pq, a + b*x^n, x], R = PolynomialRemainder[b^(Floor[(q - 1)/n] +
1)*x^m*Pq, a + b*x^n, x]}, Dist[1/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1)), Int[(a + b*x^n)^(p + 1)*ExpandToSum[
a*n*(p + 1)*Q + n*(p + 1)*R + D[x*R, x], x], x], x] - Simp[(x*R*(a + b*x^n)^(p + 1))/(a*n*(p + 1)*b^(Floor[(q
- 1)/n] + 1)), x]] /; GeQ[q, n]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && IGtQ[m, 0]

Rule 1860

Int[((A_) + (B_.)*(x_))/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{r = Numerator[Rt[a/b, 3]], s = Denominator[R
t[a/b, 3]]}, -Dist[(r*(B*r - A*s))/(3*a*s), Int[1/(r + s*x), x], x] + Dist[r/(3*a*s), Int[(r*(B*r + 2*A*s) + s
*(B*r - A*s)*x)/(r^2 - r*s*x + s^2*x^2), x], x]] /; FreeQ[{a, b, A, B}, x] && NeQ[a*B^3 - b*A^3, 0] && PosQ[a/
b]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^2} \, dx &=-\frac{x \left (a e-b c x-b d x^2\right )}{3 a b \left (a+b x^3\right )}-\frac{\int \frac{-a e-b c x}{a+b x^3} \, dx}{3 a b}\\ &=-\frac{x \left (a e-b c x-b d x^2\right )}{3 a b \left (a+b x^3\right )}-\frac{\int \frac{\sqrt [3]{a} \left (-\sqrt [3]{a} b c-2 a \sqrt [3]{b} e\right )+\sqrt [3]{b} \left (-\sqrt [3]{a} b c+a \sqrt [3]{b} e\right ) x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{9 a^{5/3} b^{4/3}}-\frac{\left (b^{2/3} c-a^{2/3} e\right ) \int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{9 a^{4/3} b}\\ &=-\frac{x \left (a e-b c x-b d x^2\right )}{3 a b \left (a+b x^3\right )}-\frac{\left (b^{2/3} c-a^{2/3} e\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{4/3} b^{4/3}}+\frac{\left (b^{2/3} c-a^{2/3} e\right ) \int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{18 a^{4/3} b^{4/3}}+\frac{\left (b^{2/3} c+a^{2/3} e\right ) \int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{6 a b}\\ &=-\frac{x \left (a e-b c x-b d x^2\right )}{3 a b \left (a+b x^3\right )}-\frac{\left (b^{2/3} c-a^{2/3} e\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{4/3} b^{4/3}}+\frac{\left (b^{2/3} c-a^{2/3} e\right ) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{18 a^{4/3} b^{4/3}}+\frac{\left (b^{2/3} c+a^{2/3} e\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{3 a^{4/3} b^{4/3}}\\ &=-\frac{x \left (a e-b c x-b d x^2\right )}{3 a b \left (a+b x^3\right )}-\frac{\left (b^{2/3} c+a^{2/3} e\right ) \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} a^{4/3} b^{4/3}}-\frac{\left (b^{2/3} c-a^{2/3} e\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{4/3} b^{4/3}}+\frac{\left (b^{2/3} c-a^{2/3} e\right ) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{18 a^{4/3} b^{4/3}}\\ \end{align*}

Mathematica [A]  time = 0.173585, size = 186, normalized size = 0.93 \[ \frac{-\left (a^{4/3} \sqrt [3]{b} e-a^{2/3} b c\right ) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )+2 \left (a^{4/3} \sqrt [3]{b} e-a^{2/3} b c\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )-2 \sqrt{3} \left (a^{2/3} b c+a^{4/3} \sqrt [3]{b} e\right ) \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt{3}}\right )-\frac{6 a b^{2/3} \left (a (d+e x)-b c x^2\right )}{a+b x^3}}{18 a^2 b^{5/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(c + d*x + e*x^2))/(a + b*x^3)^2,x]

[Out]

((-6*a*b^(2/3)*(-(b*c*x^2) + a*(d + e*x)))/(a + b*x^3) - 2*Sqrt[3]*(a^(2/3)*b*c + a^(4/3)*b^(1/3)*e)*ArcTan[(1
 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]] + 2*(-(a^(2/3)*b*c) + a^(4/3)*b^(1/3)*e)*Log[a^(1/3) + b^(1/3)*x] - (-(a^(2
/3)*b*c) + a^(4/3)*b^(1/3)*e)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(18*a^2*b^(5/3))

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 228, normalized size = 1.1 \begin{align*}{\frac{1}{b{x}^{3}+a} \left ({\frac{c{x}^{2}}{3\,a}}-{\frac{ex}{3\,b}}-{\frac{d}{3\,b}} \right ) }+{\frac{e}{9\,{b}^{2}}\ln \left ( x+\sqrt [3]{{\frac{a}{b}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}-{\frac{e}{18\,{b}^{2}}\ln \left ({x}^{2}-\sqrt [3]{{\frac{a}{b}}}x+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}+{\frac{e\sqrt{3}}{9\,{b}^{2}}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}-{\frac{c}{9\,ab}\ln \left ( x+\sqrt [3]{{\frac{a}{b}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}+{\frac{c}{18\,ab}\ln \left ({x}^{2}-\sqrt [3]{{\frac{a}{b}}}x+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}+{\frac{c\sqrt{3}}{9\,ab}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(e*x^2+d*x+c)/(b*x^3+a)^2,x)

[Out]

(1/3*c/a*x^2-1/3*e*x/b-1/3/b*d)/(b*x^3+a)+1/9/b^2*e/(1/b*a)^(2/3)*ln(x+(1/b*a)^(1/3))-1/18/b^2*e/(1/b*a)^(2/3)
*ln(x^2-(1/b*a)^(1/3)*x+(1/b*a)^(2/3))+1/9/b^2*e/(1/b*a)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(1/b*a)^(1/3)*x-1
))-1/9/b/a/(1/b*a)^(1/3)*ln(x+(1/b*a)^(1/3))*c+1/18/b/a/(1/b*a)^(1/3)*ln(x^2-(1/b*a)^(1/3)*x+(1/b*a)^(2/3))*c+
1/9/b/a*3^(1/2)/(1/b*a)^(1/3)*arctan(1/3*3^(1/2)*(2/(1/b*a)^(1/3)*x-1))*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d*x+c)/(b*x^3+a)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [C]  time = 6.77424, size = 5293, normalized size = 26.46 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d*x+c)/(b*x^3+a)^2,x, algorithm="fricas")

[Out]

1/36*(12*b*c*x^2 - 12*a*e*x - 2*(a*b^2*x^3 + a^2*b)*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^4*b^4
) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^3)/(a
^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3)))*log(1/4*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^
4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^
3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3)))^2*a^3*b^3*c - 1/2*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^2*c^3
 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b^2*((b
^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3)))*a^3*b*e^2 + 2*a*b*c^2*e + (b^2*c^3 + a^2*
e^3)*x) - 12*a*d + ((a*b^2*x^3 + a^2*b)*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3
 - a^2*e^3)/(a^4*b^4))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b
^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3))) + 3*sqrt(1/3)*(a*b^2*x^3 + a^2*b)*sqrt(-(((1/2)^(1/3)*(I*sqrt(3) + 1)*((b
^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b
^2*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3)))^2*a^2*b^2 + 16*c*e)/(a^2*b^2)))*log
(-1/4*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3) - 2*(
1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3)
))^2*a^3*b^3*c + 1/2*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^
4))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(
a^4*b^4))^(1/3)))*a^3*b*e^2 - 2*a*b*c^2*e + 2*(b^2*c^3 + a^2*e^3)*x + 3/4*sqrt(1/3)*(((1/2)^(1/3)*(I*sqrt(3) +
 1)*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)
/(a^2*b^2*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3)))*a^3*b^3*c + 2*a^3*b*e^2)*sqr
t(-(((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3) - 2*(1/
2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3)))
^2*a^2*b^2 + 16*c*e)/(a^2*b^2))) + ((a*b^2*x^3 + a^2*b)*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^4
*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^3
)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3))) - 3*sqrt(1/3)*(a*b^2*x^3 + a^2*b)*sqrt(-(((1/2)^(1/3)*(I*
sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqr
t(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3)))^2*a^2*b^2 + 16*c*e)
/(a^2*b^2)))*log(-1/4*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b
^4))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/
(a^4*b^4))^(1/3)))^2*a^3*b^3*c + 1/2*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 -
a^2*e^3)/(a^4*b^4))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*
c^3 - a^2*e^3)/(a^4*b^4))^(1/3)))*a^3*b*e^2 - 2*a*b*c^2*e + 2*(b^2*c^3 + a^2*e^3)*x - 3/4*sqrt(1/3)*(((1/2)^(1
/3)*(I*sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3) - 2*(1/2)^(2/3)*c*e*
(-I*sqrt(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4))^(1/3)))*a^3*b^3*c +
2*a^3*b*e^2)*sqrt(-(((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a^4*b^4
))^(1/3) - 2*(1/2)^(2/3)*c*e*(-I*sqrt(3) + 1)/(a^2*b^2*((b^2*c^3 + a^2*e^3)/(a^4*b^4) - (b^2*c^3 - a^2*e^3)/(a
^4*b^4))^(1/3)))^2*a^2*b^2 + 16*c*e)/(a^2*b^2))))/(a*b^2*x^3 + a^2*b)

________________________________________________________________________________________

Sympy [A]  time = 1.66737, size = 124, normalized size = 0.62 \begin{align*} \operatorname{RootSum}{\left (729 t^{3} a^{4} b^{4} + 27 t a^{2} b^{2} c e - a^{2} e^{3} + b^{2} c^{3}, \left ( t \mapsto t \log{\left (x + \frac{81 t^{2} a^{3} b^{3} c + 9 t a^{3} b e^{2} + 2 a b c^{2} e}{a^{2} e^{3} + b^{2} c^{3}} \right )} \right )\right )} + \frac{- a d - a e x + b c x^{2}}{3 a^{2} b + 3 a b^{2} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x**2+d*x+c)/(b*x**3+a)**2,x)

[Out]

RootSum(729*_t**3*a**4*b**4 + 27*_t*a**2*b**2*c*e - a**2*e**3 + b**2*c**3, Lambda(_t, _t*log(x + (81*_t**2*a**
3*b**3*c + 9*_t*a**3*b*e**2 + 2*a*b*c**2*e)/(a**2*e**3 + b**2*c**3)))) + (-a*d - a*e*x + b*c*x**2)/(3*a**2*b +
 3*a*b**2*x**3)

________________________________________________________________________________________

Giac [A]  time = 1.10256, size = 273, normalized size = 1.36 \begin{align*} -\frac{{\left (b c \left (-\frac{a}{b}\right )^{\frac{1}{3}} + a e\right )} \left (-\frac{a}{b}\right )^{\frac{1}{3}} \log \left ({\left | x - \left (-\frac{a}{b}\right )^{\frac{1}{3}} \right |}\right )}{9 \, a^{2} b} + \frac{\sqrt{3}{\left (\left (-a b^{2}\right )^{\frac{1}{3}} a e - \left (-a b^{2}\right )^{\frac{2}{3}} c\right )} \arctan \left (\frac{\sqrt{3}{\left (2 \, x + \left (-\frac{a}{b}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}}}\right )}{9 \, a^{2} b^{2}} + \frac{b c x^{2} - a x e - a d}{3 \,{\left (b x^{3} + a\right )} a b} + \frac{{\left (\left (-a b^{2}\right )^{\frac{1}{3}} a b^{2} e + \left (-a b^{2}\right )^{\frac{2}{3}} b^{2} c\right )} \log \left (x^{2} + x \left (-\frac{a}{b}\right )^{\frac{1}{3}} + \left (-\frac{a}{b}\right )^{\frac{2}{3}}\right )}{18 \, a^{2} b^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d*x+c)/(b*x^3+a)^2,x, algorithm="giac")

[Out]

-1/9*(b*c*(-a/b)^(1/3) + a*e)*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/(a^2*b) + 1/9*sqrt(3)*((-a*b^2)^(1/3)*a*
e - (-a*b^2)^(2/3)*c)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(a^2*b^2) + 1/3*(b*c*x^2 - a*x*e -
 a*d)/((b*x^3 + a)*a*b) + 1/18*((-a*b^2)^(1/3)*a*b^2*e + (-a*b^2)^(2/3)*b^2*c)*log(x^2 + x*(-a/b)^(1/3) + (-a/
b)^(2/3))/(a^2*b^4)